Chapter 3

Derivatives
3.1 - Definition of a Derivative

$$
\begin{aligned}
m_{\text {SEC }} & =\frac{f(x+h)-f(x)}{x+h-x} \\
& =\frac{f(x+h)-f(x)}{h} \\
m_{\text {TAN }} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}(x)
\end{aligned}
$$

DEF. OF DERLUATVE

Ex: Find f^{\prime} using the definition.

$$
\begin{aligned}
& f(x)=\sqrt{x} \quad \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& \lim _{h \rightarrow 0} \frac{x+h-\sqrt{x}}{h(\sqrt{x+h}+\sqrt{x})} \\
& \lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}=f^{\prime}(x)
\end{aligned}
$$

Find the equation of the tangent line at $x=4$.

$$
m=f^{\prime}(4)=\frac{1}{2 \sqrt{4}}=\frac{1}{4}
$$

point : $f(4)=\sqrt{4}=2 \Rightarrow(4,2)$

$$
y-2=\frac{1}{4}(x-4)
$$

Derivatives of Piecewise Functions

$$
f(x)=\left\{\begin{array}{ll}
2 x & x<0 \\
x^{2} & x \geq 0
\end{array} \quad \Rightarrow f^{\prime}(x)=\left\{\begin{array}{cc}
2 & x<0 \\
2 x & x>0
\end{array}\right.\right.
$$

Section 3.2 - Differentiability
$f^{\prime}(a)$ DOES NOT EXIST IF $x=a$ IS $A(N)$
(1) cusp:

$$
\lim _{x \rightarrow a^{+}} f^{\prime}(x)=\infty \Rightarrow \text { DUE } \Rightarrow f^{\prime}(a)=\text { DOE }
$$

(2) CORNER:

$$
\lim _{x \rightarrow a^{-}} f^{\prime}(x) \neq \lim _{x \rightarrow a^{+}} f^{\prime}(x)
$$

(3) Vertical tangent:
(4) Discontnuim@ $@=a$

$$
\lim _{x \rightarrow a} f^{\prime}(x)=\operatorname{DNE}(\text { veRT LINE })
$$

Section 3.2 - Differentiability

Theorem: If $f(x)$ is differentiable at a point a then $f(x)$ is continuous at $x=a$. DIFFERENTABILIM impales cm InuIT

Converse: IF $f(x)$ is connnumg at $x=a \neq f(x)$ is dir. © $x=a$.

Section 3.3 - Differentiation Rules (handout)

Section 3.5 - Trig Derivatives

Section 3.6 - Chain Rule

$$
\begin{aligned}
g(t) & =\tan (5-\sin 2 t) \\
g^{\prime}(t) & =\sec ^{2}(5-\sin 2 t)(-\cos (2 t) 2) \\
& =-2 \cos (2 t) \sec ^{2}(5-\sin 2 t)
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =\left(\cos ^{6} 3 x\right)^{5} \\
f^{\prime}(x) & =5(\cos 3 x)^{4}(-\sin 3 x \cdot 3) \\
& =-15 \sin 3 x \cos ^{4} 3 x
\end{aligned}
$$

Section 3.8 - Inverse Trig Derivatives

$$
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}
$$

$$
\begin{array}{rl|c}
f(x) & =\sin ^{-1}(3 x) \quad & \frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}} \\
\begin{aligned}
f(x) & =\frac{1}{\sqrt{1-(3 x)^{2}}} \cdot 3
\end{aligned} & y=x \tan ^{-1}\left(x^{2}\right) \\
& =\frac{3}{\prime}=x \cdot \frac{1}{1+\left(x^{2}\right)^{2}} \cdot 2 x+\tan ^{-1}\left(x^{2}\right) \cdot 1 \\
& =\frac{2 x^{2}}{1+x^{4}}+\tan ^{-1}\left(x^{2}\right)
\end{array}
$$

$$
=\frac{3}{\sqrt{1-9 x^{2}}}
$$

Section 3.9 - Logs and Exponentials

$$
\begin{aligned}
& \frac{d}{d x}\left(b^{u}\right)=b^{u} \ln b \cdot \frac{d u}{d x} \\
& \frac{d}{d x}\left(\log _{b} u\right)=\frac{1}{u \cdot \ln b} \frac{d u}{d x}
\end{aligned}
$$

Homework

AP Packet \#24-48 odd

